4. Lifestyle Management

Lifestyle management is a fundamental aspect of diabetes care and includes diabetes self-management education (DSME), diabetes self-management support (DSMS), nutrition therapy, physical activity, smoking cessation counseling, and psychosocial care. Patients and care providers should focus together on how to optimize lifestyle from the time of the initial comprehensive medical evaluation, throughout all subsequent evaluations and follow-up, and during the assessment of complications and management of comorbid conditions in order to enhance diabetes care.

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendations

DSME and DSMS programs facilitate the knowledge, skills, and abilities necessary for optimal diabetes self-care and incorporate the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSME and DSMS are to support informed decision making, self-care behaviors, problem solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (1). Providers should consider the burden of treatment and the patient’s level of confidence/self-efficacy for management behaviors as well as the level of social and family support when providing DSME or DSMS. Monitor patient performance of self-management behaviors as well as psychosocial factors impacting the person’s self-management.

DSME and DSMS, and the current national standards guiding them (1,2), are based on evidence of their benefits. Specifically, DSME helps people with diabetes to identify and implement effective self-management strategies and cope with diabetes at the four critical time points (described below) (1). Ongoing DSMS helps people with diabetes to maintain effective self-management throughout a lifetime of diabetes as they face new challenges and as advances in treatment become available (3).

Four critical time points have been defined when the need for DSME and DSMS should be evaluated by the medical care provider and/or multidisciplinary team, with referrals made as needed (1):

DSME focuses on supporting patient empowerment by providing people with diabetes the tools to make informed self-management decisions (4). Diabetes care has shifted to an approach that is more patient centered and places the person with diabetes and his or her family at the center of the care model, working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values. It ensures that patient values guide all decision making (5).

Evidence for the Benefits

Studies have found that DSME is associated with improved diabetes knowledge and self-care behaviors (2), lower A1C (6–9), lower self-reported weight (10,11), improved quality of life (8,12), healthy coping (13,14), and reduced health care costs (15,16). Better outcomes were reported for DSME interventions that were over 10 h in total duration, included follow-up with DSMS (3,17), were culturally (18,19) and age appropriate (20,21), were tailored to individual needs and preferences, and addressed psychosocial issues and incorporated behavioral strategies (4,13,22,23). Individual and group approaches are effective (11,24). Emerging evidence is pointing to the benefit of Internet-based DSME programs for diabetes prevention and the management of type 2 diabetes (25,26). There is growing evidence for the role of community health workers (27), as well as peer (27–29) and lay (30) leaders, in providing ongoing support.

DSME is associated with an increased use of primary care and preventive services (15,31,32) and less frequent use of acute care and inpatient hospital services (10). Patients who participate in DSME are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and insurance claim costs (16,31). Despite these benefits, reports indicate that only 5–7% of individuals eligible for DSME through Medicare or a private insurance plan actually receive it (33,34). This low participation may be due to lack of referral or other identified barriers such as logistical issues (timing, costs) and the lack of a perceived benefit (35). Thus, alternative and innovative models of DSME delivery need to be explored and evaluated.

Reimbursement

Medicare reimburses DSME and DSMS, when provided by a program that meets the national standards (2) and is recognized by the American Diabetes Association (ADA) or other approval bodies. DSME is also covered by most health insurance plans. DSMS has been shown to be instrumental for improving outcomes when it follows the completion of a DSME program. DSME and DSMS are frequently reimbursed when performed in person. However, although DSME and DSMS can also be provided via phone calls and telehealth, these remote versions may not always be reimbursed.

NUTRITION THERAPY

For many individuals with diabetes, the most challenging part of the treatment plan is determining what to eat and following a food plan. There is not a one-size-fits-all eating pattern for individuals with diabetes. Nutrition therapy has an integral role in overall diabetes management, and each person with diabetes should be actively engaged in education, self-management, and treatment planning with his or her health care team, including the collaborative development of an individualized eating plan (36,37). All individuals with diabetes should receive individualized medical nutrition therapy (MNT), preferably provided by a registered dietitian who is knowledgeable and skilled in providing diabetes-specific MNT. MNT delivered by a registered dietitian is associated with A1C decreases of 0.3–1% for people with type 1 diabetes (38–40) and 0.5–2% for people with type 2 diabetes (41–44).

It is important that each member of the health care team be knowledgeable about nutrition therapy principles for people with all types of diabetes and be supportive of their implementation. Emphasis should be on healthful eating patterns containing nutrient-dense, high-quality foods with less focus on specific nutrients. The Mediterranean (45), Dietary Approaches to Stop Hypertension (DASH) (46,47), and plant-based diets (48) are all examples of healthful eating patterns. See Table 4.1 for specific nutrition recommendations.

Topic . Recommendations . Evidence rating .
Effectiveness of nutrition therapy • An individualized MNT program, preferably provided by a registered dietitian, is recommended for all people with type 1 or type 2 diabetes. A
• For people with type 1 diabetes and those with type 2 diabetes who are prescribed a flexible insulin therapy program, education on how to use carbohydrate counting and in some cases fat and protein gram estimation to determine mealtime insulin dosing can improve glycemic control. A
• For individuals whose daily insulin dosing is fixed, having a consistent pattern of carbohydrate intake with respect to time and amount can result in improved glycemic control and a reduced risk of hypoglycemia. B
• A simple and effective approach to glycemia and weight management emphasizing portion control and healthy food choices may be more helpful for those with type 2 diabetes who are not taking insulin, who have limited health literacy or numeracy, and who are elderly and prone to hypoglycemia. B
• Because diabetes nutrition therapy can result in cost savings B and improved outcomes (e.g., A1C reduction) A, MNT should be adequately reimbursed by insurance and other payers. E B, A, E
Energy balance • Modest weight loss achievable by the combination of reduction of calorie intake and lifestyle modification benefits overweight or obese adults with type 2 diabetes and also those with prediabetes. Intervention programs to facilitate this process are recommended. A
Eating patterns and macronutrient distribution • As there is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for people with diabetes, macronutrient distribution should be individualized while keeping total calorie and metabolic goals in mind. E
• A variety of eating patterns are acceptable for the management of type 2 diabetes and prediabetes including Mediterranean, DASH, and plant-based diets. B
• Carbohydrate intake from whole grains, vegetables, fruits, legumes, and dairy products, with an emphasis on foods higher in fiber and lower in glycemic load, should be advised over other sources, especially those containing sugars. B
• People with diabetes and those at risk should avoid sugar-sweetened beverages in order to control weight and reduce their risk for CVD and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices A B, A
Protein • In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia. B
Dietary fat • Whereas data on the ideal total dietary fat content for people with diabetes are inconclusive, an eating plan emphasizing elements of a Mediterranean-style diet rich in monounsaturated fats may improve glucose metabolism and lower CVD risk and can be an effective alternative to a diet low in total fat but relatively high in carbohydrates. B
• Eating foods rich in long-chain ω-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA) is recommended to prevent or treat CVD B; however, evidence does not support a beneficial role for ω-3 dietary supplements. A B, A
Micronutrients and herbal supplements • There is no clear evidence that dietary supplementation with vitamins, minerals, herbs, or spices can improve outcomes in people with diabetes who do not have underlying deficiencies, and there may be safety concerns regarding the long-term use of antioxidant supplements such as vitamins E and C and carotene. C
Alcohol • Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men). C
• Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially if taking insulin or insulin secretagogues. Education and awareness regarding the recognition and management of delayed hypoglycemia are warranted. B
Sodium • As for the general population, people with diabetes should limit sodium consumption to B
Nonnutritive sweeteners • The use of nonnutritive sweeteners has the potential to reduce overall calorie and carbohydrate intake if substituted for caloric sweeteners and without compensation by intake of additional calories from other food sources. Nonnutritive sweeteners are generally safe to use within the defined acceptable daily intake levels. B
Topic . Recommendations . Evidence rating .
Effectiveness of nutrition therapy • An individualized MNT program, preferably provided by a registered dietitian, is recommended for all people with type 1 or type 2 diabetes. A
• For people with type 1 diabetes and those with type 2 diabetes who are prescribed a flexible insulin therapy program, education on how to use carbohydrate counting and in some cases fat and protein gram estimation to determine mealtime insulin dosing can improve glycemic control. A
• For individuals whose daily insulin dosing is fixed, having a consistent pattern of carbohydrate intake with respect to time and amount can result in improved glycemic control and a reduced risk of hypoglycemia. B
• A simple and effective approach to glycemia and weight management emphasizing portion control and healthy food choices may be more helpful for those with type 2 diabetes who are not taking insulin, who have limited health literacy or numeracy, and who are elderly and prone to hypoglycemia. B
• Because diabetes nutrition therapy can result in cost savings B and improved outcomes (e.g., A1C reduction) A, MNT should be adequately reimbursed by insurance and other payers. E B, A, E
Energy balance • Modest weight loss achievable by the combination of reduction of calorie intake and lifestyle modification benefits overweight or obese adults with type 2 diabetes and also those with prediabetes. Intervention programs to facilitate this process are recommended. A
Eating patterns and macronutrient distribution • As there is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for people with diabetes, macronutrient distribution should be individualized while keeping total calorie and metabolic goals in mind. E
• A variety of eating patterns are acceptable for the management of type 2 diabetes and prediabetes including Mediterranean, DASH, and plant-based diets. B
• Carbohydrate intake from whole grains, vegetables, fruits, legumes, and dairy products, with an emphasis on foods higher in fiber and lower in glycemic load, should be advised over other sources, especially those containing sugars. B
• People with diabetes and those at risk should avoid sugar-sweetened beverages in order to control weight and reduce their risk for CVD and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices A B, A
Protein • In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia. B
Dietary fat • Whereas data on the ideal total dietary fat content for people with diabetes are inconclusive, an eating plan emphasizing elements of a Mediterranean-style diet rich in monounsaturated fats may improve glucose metabolism and lower CVD risk and can be an effective alternative to a diet low in total fat but relatively high in carbohydrates. B
• Eating foods rich in long-chain ω-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA) is recommended to prevent or treat CVD B; however, evidence does not support a beneficial role for ω-3 dietary supplements. A B, A
Micronutrients and herbal supplements • There is no clear evidence that dietary supplementation with vitamins, minerals, herbs, or spices can improve outcomes in people with diabetes who do not have underlying deficiencies, and there may be safety concerns regarding the long-term use of antioxidant supplements such as vitamins E and C and carotene. C
Alcohol • Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men). C
• Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially if taking insulin or insulin secretagogues. Education and awareness regarding the recognition and management of delayed hypoglycemia are warranted. B
Sodium • As for the general population, people with diabetes should limit sodium consumption to B
Nonnutritive sweeteners • The use of nonnutritive sweeteners has the potential to reduce overall calorie and carbohydrate intake if substituted for caloric sweeteners and without compensation by intake of additional calories from other food sources. Nonnutritive sweeteners are generally safe to use within the defined acceptable daily intake levels. B

For complete discussion and references, see the ADA position statement “Nutrition Therapy Recommendations for the Management of Adults With Diabetes” (37).

Goals of Nutrition Therapy for Adults With Diabetes

  1. To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portion sizes, in order to improve overall health and specifically to:
  2. To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful foods, willingness and ability to make behavioral changes, and barriers to change
  3. To maintain the pleasure of eating by providing nonjudgmental messages about food choices
  4. To provide an individual with diabetes the practical tools for developing healthy eating patterns rather than focusing on individual macronutrients, micronutrients, or single foods

Weight Management

Body weight management is important for overweight and obese people with type 1 and type 2 diabetes. Lifestyle intervention programs should be intensive and have frequent follow-up to achieve significant reductions in excess body weight and improve clinical indicators. There is strong and consistent evidence that modest persistent weight loss can delay the progression from prediabetes to type 2 diabetes (49,50) and is beneficial to the management of type 2 diabetes (see Section 7 “Obesity Management for the Treatment of Type 2 Diabetes”).

In overweight and obese patients with type 2 diabetes, modest weight loss, defined as sustained reduction of 5% of initial body weight, has been shown to improve glycemic control and to reduce the need for glucose-lowering medications (51–53). Sustaining weight loss can be challenging (54). Weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day energy deficit or provide ∼1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day for men, adjusted for the individual’s baseline body weight. For many obese individuals with type 2 diabetes, weight loss >5% is needed to produce beneficial outcomes in glycemic control, lipids, and blood pressure, and sustained weight loss of ≥7% is optimal (54).

The diets used in intensive lifestyle management for weight loss may differ in the types of foods they restrict (e.g., high-fat vs. high-carbohydrate foods), but their emphasis should be on nutrient-dense foods, such as whole grains, vegetables, fruits, legumes, low-fat dairy, lean meats, nuts, and seeds, as well as on achieving the desired energy deficit (55–58). The diet choice should be based on the patients’ health status and preferences.

Carbohydrates

Studies examining the ideal amount of carbohydrate intake for people with diabetes are inconclusive, although monitoring carbohydrate intake and considering the blood glucose response to dietary carbohydrate are key for improving postprandial glucose control (59,60). The literature concerning glycemic index and glycemic load in individuals with diabetes is complex, though in some studies lowering the glycemic load of consumed carbohydrates has demonstrated A1C reductions of –0.2% to –0.5% (61,62). A systematic review (61) found that whole-grain consumption was not associated with improvements in glycemic control in type 2 diabetes. One study did find a potential benefit of whole-grain intake in reducing mortality and cardiovascular disease (CVD) among individuals with type 2 diabetes (63).

As for all Americans, individuals with diabetes should be encouraged to replace refined carbohydrates and added sugars with whole grains, legumes, vegetables, and fruits. The consumption of sugar-sweetened beverages and processed “low-fat” or “nonfat” food products with high amounts of refined grains and added sugars should be strongly discouraged (64).

Individuals with type 1 or type 2 diabetes taking insulin at mealtimes should be offered intensive education on the need to couple insulin administration with carbohydrate intake. For people whose meal schedules or carbohydrate consumption is variable, regular counseling to help them understand the complex relationship between carbohydrate intake and insulin needs is important. In addition, education regarding the carbohydrate-counting approach to meal planning can assist them with effectively modifying insulin dosing from meal to meal and improving glycemic control (39,59,65–67). Individuals who consume meals containing more protein and fat than usual may also need to make mealtime insulin dose adjustments to compensate for delayed postprandial glycemic excursions (68,69). For individuals on a fixed daily insulin schedule, meal planning should emphasize a relatively fixed carbohydrate consumption pattern with respect to both time and amount (37). By contrast, a simpler diabetes meal planning approach emphasizing portion control and healthful food choices may be better suited for some elderly individuals, those with cognitive dysfunction, and those for whom there are concerns over health literacy and numeracy (37–39,41,59,65). The modified plate method (which uses measuring cups to assist with portion measurement) may be an effective alternative to carbohydrate counting for some patients in improving glycemia (70).

Protein

There is no evidence that adjusting the daily level of protein ingestion (typically 1–1.5 g/kg body weight/day or 15–20% total calories) will improve health in individuals without diabetic kidney disease, and research is inconclusive regarding the ideal amount of dietary protein to optimize either glycemic control or CVD risk (61). Therefore, protein intake goals should be individualized based on current eating patterns. Some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety (47).

For those with diabetic kidney disease (with albuminuria and/or reduced estimated glomerular filtration rate), dietary protein should be maintained at the recommended daily allowance of 0.8 g/kg body weight/day. Reducing the amount of dietary protein below the recommended daily allowance is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the rate at which glomerular filtration rate declines (71,72).

In individuals with type 2 diabetes, ingested protein may enhance the insulin response to dietary carbohydrates (73). Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia.

Fats

The ideal amount of dietary fat for individuals with diabetes is controversial. The Institute of Medicine has defined an acceptable macronutrient distribution for total fat for all adults to be 20–35% of energy (74). The type of fats consumed is more important than total amount of fat when looking at metabolic goals and CVD risk (64,75–78). Multiple randomized controlled trials including patients with type 2 diabetes have reported that a Mediterranean-style eating pattern (75,79–82), rich in monounsaturated fats, can improve both glycemic control and blood lipids. However, supplements do not seem to have the same effects. A systematic review concluded that dietary supplements with ω-3 fatty acids did not improve glycemic control in individuals with type 2 diabetes (61). Randomized controlled trials also do not support recommending ω-3 supplements for primary or secondary prevention of CVD (83–87). People with diabetes should be advised to follow the guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans fat (64). In general, trans fats should be avoided.

Sodium

Micronutrients and Supplements

There continues to be no clear evidence of benefit from herbal or nonherbal (i.e., vitamin or mineral) supplementation for people with diabetes without underlying deficiencies (37). Metformin is associated with vitamin B12 deficiency, with a recent report from the Diabetes Prevention Program Outcomes Study (DPPOS) suggesting that periodic testing of vitamin B12 levels should be considered in metformin-treated patients, particularly in those with anemia or peripheral neuropathy (92). Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised because of lack of evidence of efficacy and concern related to long-term safety. In addition, there is insufficient evidence to support the routine use of herbals and micronutrients, such as cinnamon (93) and vitamin D (94), to improve glycemic control in people with diabetes (37,95).

Alcohol

Moderate alcohol consumption does not have major detrimental effects on long-term blood glucose control in people with diabetes. Risks associated with alcohol consumption include hypoglycemia (particularly for those using insulin or insulin secretagogue therapies), weight gain, and hyperglycemia (for those consuming excessive amounts) (37,95).

Nonnutritive Sweeteners

For people who are accustomed to sugar-sweetened products, nonnutritive sweeteners have the potential to reduce overall calorie and carbohydrate intake and may be preferred to sugar when consumed in moderation. Regulatory agencies set acceptable daily intake levels for each nonnutritive sweetener, defined as the amount that can be safely consumed over a person’s lifetime (37,96).

PHYSICAL ACTIVITY

Recommendations

Physical activity is a general term that includes all movement that increases energy use and is an important part of the diabetes management plan. Exercise is a more specific form of physical activity that is structured and designed to improve physical fitness. Both physical activity and exercise are important. Exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being. Physical activity is as important for those with type 1 diabetes as it is for the general population, but its specific role in the prevention of diabetes complications and the management of blood glucose is not as clear as it is for those with type 2 diabetes.

Structured exercise interventions of at least 8 weeks’ duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even without a significant change in BMI (97). There are also considerable data for the health benefits (e.g., increased cardiovascular fitness, greater muscle strength, improved insulin sensitivity, etc.) of regular exercise for those with type 1 diabetes (98). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (99). Other benefits include slowing the decline in mobility among overweight patients with diabetes (100). The ADA position statement “Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association” reviews the evidence for the benefits of exercise in people with diabetes (101).

Exercise and Children

All children, including children with diabetes or prediabetes, should be encouraged to engage in at least 60 min of physical activity each day. Children should engage in at least 60 min of moderate-to-vigorous aerobic activity every day with muscle- and bone-strengthening activities at least 3 days per week (102). In general, youth with type 1 diabetes benefit from being physically active, and an active lifestyle should be recommended to all.

Frequency and Type of Physical Activity

The U.S. Department of Health and Human Services’ physical activity guidelines for Americans (103) suggest that adults over age 18 years engage in 150 min/week of moderate-intensity or 75 min/week of vigorous-intensity aerobic physical activity, or an equivalent combination of the two. In addition, the guidelines suggest that adults do muscle-strengthening activities that involve all major muscle groups 2 or more days/week. The guidelines suggest that adults over age 65 years and those with disabilities follow the adult guidelines if possible or, if not possible, be as physically active as they are able.

Recent evidence supports that all individuals, including those with diabetes, should be encouraged to reduce the amount of time spent being sedentary (e.g., working at a computer, watching TV), by breaking up bouts of sedentary activity (>30 min) by briefly standing, walking, or performing at other light physical activities (104,105). Avoiding extended sedentary periods may help prevent type 2 diabetes for those at risk and may also aid in glycemic control for those with diabetes.

Physical Activity and Glycemic Control

Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (106) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (107). If not contraindicated, patients with type 2 diabetes should be encouraged to do at least two weekly sessions of resistance exercise (exercise with free weights or weight machines), with each session consisting of at least one set (group of consecutive repetitive exercise motions) of five or more different resistance exercises involving the large muscle groups (106).

For type 1 diabetes, although exercise in general is associated with improvement in disease status, care needs to be taken in titrating exercise with respect to glycemic management. Each individual with type 1 diabetes has a variable glycemic response to exercise. This variability should be taken into consideration when recommending the type and duration of exercise for a given individual (98).

Women with preexisting diabetes, particularly type 2 diabetes, and those at risk for or presenting with gestational diabetes mellitus should be advised to engage in regular moderate physical activity prior to and during their pregnancies as tolerated (101).

Pre-exercise Evaluation

As discussed more fully in Section 9 “Cardiovascular Disease and Risk Management,” the best protocol for assessing asymptomatic patients with diabetes for coronary artery disease remains unclear. The ADA consensus report “Screening for Coronary Artery Disease in Patients With Diabetes” (108) concluded that routine testing is not recommended. However, providers should perform a careful history, assess cardiovascular risk factors, and be aware of the atypical presentation of coronary artery disease in patients with diabetes. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and slowly increase the intensity and duration. Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, untreated proliferative retinopathy, autonomic neuropathy, peripheral neuropathy, and a history of foot ulcers or Charcot foot. The patient’s age and previous physical activity level should be considered. The provider should customize the exercise regimen to the individual’s needs. Those with complications may require a more thorough evaluation (98).